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Quantum dissipation in unbounded systems
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In recent years trajectory based methodologies have become increasingly popular for evaluating the time
evolution of quantum systems. A revival of the de Broglie–Bohm interpretation of quantum mechanics has
spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using
techniques similar to those found in computational fluid dynamics one can construct the wave function of a
quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements
~Bohm particles! which evolve according to nonclassical equations of motion. Until very recently these
schemes have been limited to conservative systems. In this paper, we present our methodology for including
the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive
hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix
and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our
applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner
phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the
bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approxi-
mation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspon-
dence in the context of the Bohmian paths.

DOI: 10.1103/PhysRevE.65.026143 PACS number~s!: 05.30.2d, 03.65.Yz
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I. INTRODUCTION

The de Broglie–Bohm–Madelung description of quantu
mechanics is based upon the observation that the quan
wave functionc serves as an ancillary driving field for a
ensemble of particle elements@1–6#. These so-called Bohm
ian trajectories are typically highly nonclassical since th
follow the ray lines for a geometric construction ofc @7#. In
the causal interpretation of quantum mechanics, one can
a hydrodynamic analogy to ascribe some measure of ph
cal reality to the individual trajectories. A detailed account
this view can be found in Refs.@8,9#.

The hydrodynamic analogy of quantum mechanics
most naturally written in terms of the current density for
Madelung fluid defined by the probability distribution fun
tion given by r(x)5uc(x)u2. In the Bohmian scheme, w
represent the fluid by an ensemble of particles that follow
set of pathsx(t) satisfying ẋ(t)5v@x(t)# which are identi-
fied as the flow lines~stream lines! of the probability fluid.
As such, the velocity field for a particle of massm is given
by

vW ~x,t !5
jW~x,t !

r~x,t !
, ~1!

where

jW~x,t !5
\

2mi
~c*“W c2c“W c* ! ~2!
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is the current andr(x) is the quantum density, which evolve
according to the continuity equation:

] tr1¹W • jW50. ~3!

Equations~1!–~3! are generally true for any fluid; howeve
for the case of a Madelung fluid we takec to be a solution of
the time-dependent Schro¨dinger equation. Definingdt5] t
1vm]m as the material derivative that computes the rate
change along some pathẋm(t)5vm@x(t)#, Eq. ~3! becomes

1

r

dr

dt
52~]mvm!. ~4!

Consequently, given a discrete ensemble of space-time p
$x(t)% we can define the wave functionpointwiseat any time
t as

c„x~ t !…5expF2E
0

t

]mvm~s!dsGexpF i

\ E
0

t

L~s!dsGc„x~0!…,

~5!

where*0
t L(s)ds is the action associated with the pathx(t).

Written as such, we can clearly see from Eq.~5! that nonlo-
cality and other intrinsically quantum mechanical effects
faithfully represented in this description. Substituting Eq.~5!
into the time-dependent Schro¨dinger equation reveals tha
nothing has been swept under the rug. The wave functio
Eq. ~5! is a solution to the Schro¨dinger equation, it is simply
that the propagator now acts pointwise over the space
quantum paths.

In the Bohmian description of quantum mechanics, it
generally argued that at some point these paths should
semble their classical analogues. Indeed, the actionSobeys a
Hamilton-Jacobi equation that is almost identical to the cl
©2002 The American Physical Society43-1
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sical Hamilton-Jacobi equation with the addition of a non
cal potential of purely quantum mechanical origin:

] tS1Hclass2
\2

2m

1

Ar~x!
¹2Ar~x!50. ~6!

The quantum potential represented in the last term repres
a strain energy due to the local curvature of the quan
density. It does not depend upon the actual intensity ofr(x),
only its shape. Consequently, trajectories are accelerate
ther through or away from regions of intense curvature. Fo
Gaussian wave packet, the quantum potential forces traje
ries away from the central peak, thereby causing the w
packet to spread over as much space as possible the
minimizing the strain energy. However, since Eq.~5! must be
single valued along all the paths, the paths themselves
not allowed to cross each other. This gives rise to region
compression and inflation within the wave function that c
be easily identified with constructive and destructive interf
ence. Hence individual Bohmian paths are typically noncl
sical and generally bear no likeness whatsoever to their c
sical counter parts.

The purpose of this paper is to use the Bohmian const
tion to develop a quantum trajectory based theory suita
for studying systems at finite temperature. We have rece
reported a Bohmian-like approach suitable for quant
Brownian motion as described by the reduced density ma
of a tagged harmonic oscillator in which the effects of t
environment have been reduced to an effective influence
tion @10#. Our analysis involves two types of trajectories re
resenting the evolution of the diagonal and off-diagonal e
ments of the density matrix and we address the questi
what ~if any! effect an external environment plays in th
evolution of a Bohmian trajectory and how can we correc
incorporate the effects of an external environment into a
hmian description. Since Bohmian trajectories provide a s
able springboard for interpretation, we can use the trajec
construction as way to understand quantum relaxation, d
herence, and quantum/classical correspondence for a sy
in contact with a thermal bath.

In the present study, we focus our attention on the di
pative dynamics of unbounded quantum systems. Our in
est in unbound systems is two part. First, the potential ene
surface of an unbound system resembles the open cha
of a reaction coordinate corresponding to the reactant
product species of a chemical reaction. We believe that
trajectory based approach might offer some novel insi
into the fundamental difficulties associated with a quant
transition state theory for chemical reaction dynamics.
that end we pursue an understanding of dissipative effect
the Bohmian trajectories for several model unbounded s
tems. Secondly, the high-temperature limit of a system
contact with a thermal environment requires that the ther
energy of the bath be much greater than the zero-point
ergy of the system. This point becomes vague for unboun
systems where there is not necessarily a zero-point mo
leading us to conjecture an alternative criteria for rationa
ing the domain of validity for high-temperature approxim
tions in unbounded systems. In what follows, we presen
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brief overview of our approach and its implementation
ward quantum dissipation in unbounded systems us
adaptive-Lagrangian meshes.

II. THEORETICAL OVERVIEW

The starting point for our approach is to consider the d
namics of a quantum mechanical particle with massm and
positionx in contact with a multimode bath with coordinate
$q1 ,...,qn%. The Lagrangian for such a system is given b

L5
m

2
ẋ22V~x!1(

i 51

n S mi

2
q̇i

22
miv i

2

2
qi

2D 2gx(
i 51

n

ciqi .

~7!

Writing the full wave function for the combined ensemble

uc~ t !&5e2 iHt /\ucs& ^ ucB&, ~8!

it is straightforward to infer that the velocity field in th
system subensemble is given by

vW s~x,$q%,t !5
\

2mi

@C* ~x,$q%,t !]xC~x,$q%,t !2c.c.#

uC~x,$q%,t !u2 ,

~9!

and that the velocity field for a member of the bath sub
semble is given by

vW qj
~x,$q%,t !5q̇ j~x,$q%,t !

5
\

2mi

@C* ~x,$q%,l !]qj
C~x,$q%,t !2c.c.#

uC~x,$q%,t !u2 .

~10!

Because the interaction coupling the system and the b
does not commute with either of the Hamiltonians represe
ing the uncoupled evolution of the separated ensembles
system trajectoriesẋ(t)5vW s(t) are entangled with the evolu
tion of the bath variables$q% and vice versa. For a problem
involving O(1023) degrees of freedom the dynamics of th
entangled system1bath state is quite intractable. We are th
forced to seek out a reduced description for the system
namics. A wide variety of theoretical models have been
veloped for reducing the dimensions of a complex syste
These include projection operator techniques, the Lindb
@11,12# semigroup operator approach, Redfield theory,
Feynman-Vernon @13,14# influence functional approach
fluctuating force models, and many others~cf., Ref. @15# for
an excellent review!. In this paper, we will invoke the influ-
ence functional approach that has produced several ma
equations@16–18# for the reduced density matrix of a quan
tum system in contact with a thermal bath. In the followin
subsections, we present a brief description of the simples
these equations, the Caldeira-Leggett master equation,
also its hydrodynamic reformulation.
3-2
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QUANTUM DISSIPATION IN UNBOUNDED SYSTEMS PHYSICAL REVIEW E65 026143
A. Caldeira-Leggett master equation

The motion of a classical particle in contact with a med
is typically described using the Fokker-Planck equation
generate the various distribution functions characterizing
motion of an ensemble of trial trajectories. In particular, t
velocity distribution of a particle undergoing Brownian m
tion evolves according to

]p~v,t !

]t
5g

]

]v
„vp~v,t !…1Dv

]2

]v2 p~v,t !, ~11!

where Dv5g/Mb and g is the friction coefficient. If we
apply the correspondence principle to this purely class
equation of motion, substituting the quantum mechanical
erators x̂ for x and p̂ for p, one obtains a correspondin
quantum mechanical version@19,20#

i\] tr5@Ĥs ,r#1\ igS @ x̂,$ p̂,r%#2
1

l2 †x̂,@ x̂,r#‡D .

~12!

Here, Ĥs5T̂x1V( x̂) is the renormalized system Hami
tonian with potentialV( x̂), x̂ and p̂ are the quantum me
chanical position and momentum operators acting on the
tem and $Â,B̂%5ÂB̂1B̂Â is the anticommutator bracke
Finally, l5\/A2mkT is the thermal de Broglie wavelengt
for the particle of interest. Even though this simple subst
tion seems rather trivial and almost too obvious, Eq.~12!
was in fact first derived by Caldeira and Leggett~CL! start-
ing from a path-integral description for a particle coupled
a bath of harmonic oscillators@16#. As noted by many others
the CL equation is,by construction, strictly valid in the high-
temperature limit where the zero-point motions in the b
can be effectively ignored. This approximation along w
the assumption of a cutoff frequency for the spectral den
ultimately leads to a Markovian description for the corre
tion of forces in the bath. As such, the CL model is valid on
for times much longer than the characteristic relaxation ti
of the bath.

Working through the indicated operations in Eq.~12! pro-
duces a linear equation similar to the time-dependent Sc¨-
dinger equation

i\
]r

]t
5Lrr, ~13!

where the Liouville operatorLr is an effective ‘‘Hamil-
tonian’’ operator for a quantum mechanical problem cons
ing of two degrees of freedom:x moving forward in time,
andy moving backwards in time. Writing Eq.~13! explicitly,
we find

Lr5H~x!2H~y!2 i\g~x2y!S ]

]x
2

]

]yD
2 igS 2mkT

\ D ~x2y!2. ~14!
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The first two terms in Eq.~14!, H(x)2H(y), we combine
together as the quantum Liouvillian operator for the u
coupled system. The next term is the dissipative coupling
the environment. Indeed, the dynamics are much simila
that of a charged particle in a ‘‘magnetic’’ field with a vecto
potential

AW 5g~x2y!~ i2 j !. ~15!

However, since“W 3AW 50 everywhere there no ‘‘physical’
magnetic field. Finally, the last term in Eq.~14! reduces the
magnitude of the off-diagonal elements ofr(x,y) bringing it
to a diagonal form asr(x,y) evolves in time. This we asso
ciate with the process of decoherence.

B. Quantum trajectories

Since we are interested in solving Eq.~13! by represent-
ing r as a Madelung fluid, we shall writer in the form
suggestive of Bohmian mechanics for the quantum w
function

r~x,y!5eg1 iA/\. ~16!

At this point, we move to a relative coordinate framej
5(x1y)/& and h5(y2x)/&, whereby the component
of the density matrix components along thej direction rep-
resent population atx5y5j/& and components in theh
direction represent coherences between two spatially s
rated position eigenstates. Substitutingr~j, h! into Eq. ~13!
and usingLr from above, one obtains equations of motio
for a Madelung fluid with two constitutive equations. Firs
an equation of continuity given by

dg

dt
52

1

2
¹W •vW 1g2

2g

l2 h2. ~17!

Secondly, the Lagrangian

L52mj̇ ḣ12mghj̇2Q2V, ~18!

the time integral of which is the actionA along a single
quantum trajectoryz(t)5$j(t),h(t)% and is given by

A@z~ t !#5E
0

t

L~z~ t8!,z~ t8!dt8. ~19!

The last two potential terms in Eq.~18! are the quantum
potential Q5Q(x)2Q(y) and classical potentialV5Ṽ(x)
2Ṽ(y), which both come from the uncoupled Hamiltonia
at two different points. The quantum potential in the relati
frame is given by

Q5
\2

m
@]j,hg1~]jg!~]hg!#. ~20!

In a dynamical sense, the strain energy of the Madelung fl
increases when the local curvature of the density increa
As we have noted earlier, this term introduces nonlocal c
pling between trajectory elements and also represents a
3-3
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JEREMY B. MADDOX AND ERIC R. BITTNER PHYSICAL REVIEW E65 026143
ferential geometric constraint between the extrinsic curva
invariants of a surface generated byZ5cg(j,h) and the
action per unit volume of a Lagrangian flow line of th
Madelung fluid@21#.

Given the actionA(j,h) and logarithmic amplitude
g(j,h), we can synthesize the density matrix over an
semble of flow-line trajectories:

r„j~ t !,h~ t !,t…5expH E
0

tF2
1

2
¹W •vW 1g2

2g

l2 h2~s!Gds

1
i

\ E
0

t

LdsJ r„j~0!,h~0!,0…. ~21!

As in the analogous equation defining the wave funct
along a trajectory line, Eq.~21! may only be usedpointwise
on a space of discrete paths parameterized byt. In other
words, at timet50, we discretizer over an ensemble o
points $j(0),h(0)% and follow the evolution ofr as the
points themselves evolve as Lagrangian fluid elements.
cause these trajectories are akin to the Bohmian trajecto
of the wave function, we refer to the bundle of such traje
tories asBohm-Liouvilletrajectories.

To obtain the dynamics of the trajectory elements, we
the canonical relation between action and momentum, h
defined as

pj52
]S

]h
, ~22!

ph52
]S

]j
. ~23!

This odd relation between the canonical momenta and
action is due to the time-reversed dynamics in they direction
introduced via thec* (y) contribution to the density matrix
Furthermore, since we have a vector potential present in
system, the material velocities and the canonical mome
are no longer parallel to each other, instead, the particle
locities are deflected by the vector potential

vh5ḣ5
ph

m
12gh, ~24!

vj5 j̇5
pj

m
. ~25!

Notice that all trajectories off the diagonalj axis of the den-
sity matrix are deflectedaway from the diagonal axis and
trajectories originating on thej axis are constrained to re
main on thej axis. This is simply a dynamical manifestatio
of the requirement that normalization of the density mat
be preserved, i.e.,

]

]t
Tr r5

]

]t E2`

`

r~j,0!dj50. ~26!

What strikes one as quite odd is that the presence of diss
tion via the vector potential seems to create long-ranged
02614
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herences within the system by pulling amplitude away fro
the diagonalj axis. However, this also has the effect
drawing density matrix amplitude into regions where the c
herences are damped at an increasingly faster rate. The
librium state is achieved when these two processes coun
balance the effects of the quantum potential, leading t
stationaryr~j,h!. While r may be stationary, the off-diagona
trajectories are certainly not stationary due to the coopera
of forces associated with the vector potential and finite c
vature of the quantum density. We shall have more to
about this in a later section but for now we digress to disc
our computational methodology.

III. COMPUTATIONAL METHODOLOGY

Our computational scheme is based upon the quan
trajectory method~QTM! developed by Wyatt and co
workers for solving the time-dependent Schro¨dinger equa-
tion @21–25#. Recently Wyatt and Na@26# have extended
their quantum trajectory based approach to a tagged osc
tor in contact with ann-mode harmonic bath,~wheren<15!
with each mode treated as an ensemble of Bohmian partic
This multidimensional treatment uses the trajectories a
moving Lagrangian mesh of points and synthesizes the w
function over the space of paths. This is in contrast to
typical post analysis where the wave function is first co
puted by solving the time-dependent Schro¨dinger equation
and then the paths are computed. Other numerical app
tions of hydrodynamic trajectories in quantum mechan
can be found in Refs.@27,28#.

Adapting the QTM for applications involving the densi
matrix is a fairly straightforward procedure and our impl
mentation is as follows. The density matrix of a on
dimensional~1D! quantum system is discretized over a 2
grid of points. Each grid point represents a Lagrangian fl
particle that carries a bit of density exp(g) and phaseA. The
ensemble of particles obeys a set of Newtonian-type eq
tions of motion determined by the forces associated withQ,
V, and in general, the interactions with a thermal enviro
ment. This property of our approach is analogous to
‘‘quantum dressed’’ classical mechanics scheme used
Billing @29–32# in cooperation with a time-dependent DV
methodology for solving the time-dependent Schro¨dinger
equation.

The Bohm-Liouville particles are organized into loc
neighborhoods over which the functions and derivatives c
tained in Eq.~21! can be represented using a finite polyn
mial basis$p(j,h)% and we use simple forward Euleria
integration to evaluate the time integrals. For a given nei
borhood of points, we can expand a functionf (j,h) about
some central point, (jo ,ho), such that the value of the func
tion at any point (j i ,h i) in the neighborhood is given by

f ~j i ,h i !5 f ~jo ,ho!1(
j

nb

aj pj~j i2jo ,h i2ho!, ~27!

where theaj ’s are the coefficients for the polynomial basi
Typically we use a simple quadratic basis, i.
$1,j,h,j2/2,jh,h2/2% with approximately 10–20 points pe
3-4
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QUANTUM DISSIPATION IN UNBOUNDED SYSTEMS PHYSICAL REVIEW E65 026143
neighborhood. The fact that we have more neighborh
points than basis polynomials leads to an overdetermined
of least squares equations. In matrix notation this sys
of equations becomesF5a•p, where Fi5 f (j i ,h i)
2 f (jo ,ho). The vector of coefficients is then determined f
each point by finding the shape matrixp21 such thata
5p21

•F. Additionally, we incorporate a Gaussian weightin
function such that neighboring points further away fro
(j i ,h i) contribute less to the determination of its coef
cients. It has been found that the weighting procedure
hances the locality of the polynomial fit thereby increas
the accuracy of the calculation. We also find it computatio
ally beneficial to impose the symmetry requirements dicta
by the Hermitian property of the density matrix. Specifica
A(j,h), Q(j,h), and vh(j,h) are all antisymmetric with
respect to reflection across theh axis while g(j,h) and
vj(j,h) are symmetric. For a grid containingnj3nh points,
we can reduce the computational overhead by explic
propagating only the upper~or lower! half points.

The main advantage of the hydrodynamic approach is
the grid points in our calculations adapt to follow the flow
the quantum density whereas traditional Fourier techniq
for solving the Liouville-von Neumann equation@33,34# are
constrained to fixed spatial grids. Adaptation eliminates
need to have grid points in regions where there is no sign
cant accumulation of density; however, as the density pa
evolves into a once vacant region, the grid faithfully follow
Other numerical methodologies for examining the dynam
of dissipative quantum systems use Monte Carlo path i
gral schemes@35–37# for performing the highly nontrivial
task of resolving an exact or approximate quantum propa
tor for the reduced system.

Unfortunately, there are several caveats that one enc
ters while using an adaptive Lagrangian grid. When the c
vature of the density becomes intense the subsequent q
tum forces are quite strong that often result in cros
trajectories: a phenomena that is strictly forbidden in the
Broglie–Bohm approach. This is referred to as the no
problem and has been addressed by Wyatt and Bittne
Refs.@24,25#. A problem that is unique to dissipative system
is associated with the vector potential whereby particles
continuously deflected outward from theh axis resulting in a
substantial loss of numerical accuracy. To combat this ef
we find it necessary to periodically remesh the particles b
onto a uniform grid. In bound systems, we have found t
mapping the particles to a grid with dimensions defined
eight times the rms width of the density to be very succe
ful. This method does not work so well for unbounded s
tems as the rms widths grow rapidly causing the mesh
particles to become very sparse as the grid expands. In
calculations that follow, we have imposed cut-off restrictio
such that the dimensions of the grid will not expand beyo
an arbitrary predetermined length. Combining the cut-off
strictions with the remeshing procedure ensures that the
sity of grid points is large enough to accurately compute
derivatives in the equations of motion. Eventually though
density becomes nonzero at the end points of the grid c
ing reflections that introduce spurious effects into our
02614
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sults. Nonetheless, despite this problem we are able to
tain sufficient numerical accuracy.

IV. DISCUSSION AND RESULTS

A. The free particle

Consider a free particle with massm represented by a
symmetric Gaussian density packet having initial rms wid
given by sj5sh5so . In the absence of any dissipativ
influence the Gaussian widths will expand according to
relation @38#,

s~ t !5A^x2&2^x&25soS 11
\2t2

4m2so
4D 1/2

. ~28!

The linear entropy of the system is related to the den
matrix by the following expression:

S52Tr~r ln r!'12E E
2`

1`

r~j,h!r~j,2h!djdh,

~29!

which for a Gaussian density packet is related to the r
widths by

S512
1

2

sh

sj
. ~30!

For the nondissipative case,S51/2 for all time sincesj

5sh . However, for dissipative dynamics we expect th
sj.sh due to narrowing of the density inh and broadening
in j as a consequence of decoherence and relaxation. S
would predict that the linear entropy must be greater th
one half for a free particle in contact with a thermal enviro
ment. We have analyzed the time dependence of the
widths and the linear entropy for a free particle with ma
m52000 amu in contact with a thermal bath at various te
peratures. In Fig. 1, we have plotted the curves for the lin
entropy. The solid line represents the entropy for uncoup
case and we see that it does not vary with time. At h
temperatures (T>800 K), we observe that the curves for th
linear entropy do increase in time and reflect the fact thatsh
is a decreasing function of time. This behavior is related
the destruction of phase information in the system and is
hallmark of decoherence in our calculations. At low tempe
tures (T<500 K) the entropy actuallydecreaseswith time
and in some cases~0 and 100 K! becomes less than zero
potentially violating the second law of thermodynamics. Th
result is somewhat suspicious in that the curves forsh domi-
nate over those corresponding tosj . The odd behavior
seems to suggest that at low temperatures, phase inform
actually flows into the system, a result that contradicts b
the physical nature of decoherence and the fact that th
cannot be coherence between states with zero popula
@38#. Notice that the entropy curves at 300 and 500 K plate
and eventually recross the undamped curve. This beha
indicates a time scale over which the CL model is not va
and demonstrates how that time scale decreases with inc
ing kT.
3-5
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JEREMY B. MADDOX AND ERIC R. BITTNER PHYSICAL REVIEW E65 026143
Another way that we can look at this is in terms of t
Wigner representation of the density matrix. If we take t
Wigner transform@39# of a Gaussian density matrix, we fin
that the width inh is inversely proportional to the spread
momentum ofWr . SettingQ5j, the Wigner transformation
in the relative coordinate system is given by

Wr~Q,P!5E r~Q,h!eiPh/\dh. ~31!

Taking

r~j,h!5A expF2
1

2 S j2

sj
2 1

h2

sh
2 D G , ~32!

as the form of a Gaussian density packet, whereA is a nor-
malization constant, the Wigner distribution is

Wr~Q,P!5A2pshA expF2
1

2 S Q2

sj
2 1

P2sh
2

\2 D G . ~33!

When^Q&50 the uncertainty in position is given by the rm
width DQ5sj . For our Gaussian density packet, the unc
tainty in momentum is then related to the uncertainty inh via
a simple Fourier relationship,DP5\/sh . Looking at the
undamped case we know that the uncertainty prod
DQDP5\sj /sh is preserved for all time. For the high
temperature cases,sj increases whilesh decreases, henc
the uncertainty productDQDP also increases. Furthermor
if the initial state were not a minimum uncertainty state~i.e.,
a squeezed state wheresjÞsh at time t50! one could

FIG. 1. Linear entropy vs time curves for the free particle,m
52000 amu, in contact with a bath of harmonic oscillators w
damping constantg50.005 a.u.21 at temperatures~solid! T50 K,
~ ! T50 K, ~• ! T5100 K, ~•--! T5300 K, ~•-•-! T
5500 K, ~••-! T5800 K, ~¯-! T51200 K, and ~• • • •! T
52000 K.
02614
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imagine the uncertainty product to decrease over the co
of the decoherence time scale and then turnover to incre
at some thermally prescribed rate. At low temperaturessj

increases as before, however,sh increases at greater rat
resulting in a ‘‘supercoherent’’ density matrix that violate
Heisenberg’s uncertainty principle,DQDP.\. Recall that
the CL master equation is valid only in the limit of hig
temperature. Perhaps then it is not surprising that as
probe the lower bounds of this approximation, we sub
quently violate several fundamental laws of physics. Our
sults serve as a demonstration of the well-known failure
the Markov approximation at low temperatures.

B. The symmetrical Eckart barrier

Next, we apply our methodology to the nontrivial pro
lem of a wave packet relaxing on an Eckart barrier,

V~x!5Vo sech2~px/vo!. ~34!

The Eckart barrier serves as a benchmark problem from t
sition state theory for modeling the reaction coordinate o
collinear H1H2 reaction. Here we study the effects of diss
pation on a Gaussian density packet centered about the
of the barrier that is parameterized to resemble the H1H2
reaction, whereVo50.0249 a.u. andwo50.6613 a.u. We
again examine the time dependence of the rms widths of
density packet and the linear entropy at various bath te
peratures. The results forsj andsh are plotted in Figs. 2 and
3, respectively. The curves for the Eckart barrier exhibit
same general trends as the free particle problem. In the
sence of a dissipative influence, the rms widths inj and h
evolve identically for all time. For the high-temperatu
cases, we see evidence of decoherence as density amp

FIG. 2. sj vs time curves for a particle relaxing on the Ecka
barrier at temperature~solid! T50 K, ~ ! T5100 K, ~• !
T5300 K, ~•-•-! T5500 K, ~•-•-! T5800 K, and ~••-! T
51200 K.
3-6
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in h is damped down in time. At low temperatures, we o
serve that the curves forsh exceed that for the undampe
scenario. As we have discussed, this nonphysical result
gests that the density matrix at finite temperature has bec
more coherent than the uncoupled system. After a cer
point in time, we see that the low temperaturesh curves
eventually bottom out and recross the undamped solid l
Basically this corresponds to the emergence of a charact
tic time scale over which the CL model is invalid. A simila
type of analysis involving the linear entropy is given in Fi
4. Because the density packet is not strictly a Gaussian fo

FIG. 3. sh vs time curves for the Eckart barrier at the tempe
tures using the same dashing scheme as in Fig. 2.

FIG. 4. Linear entropy vs time curves for the Eckart barrier
various temperatures using the same dashing scheme as in Fi
02614
-

g-
e

in

e.
is-

all

time, the linear entropy for the undamped case is no lon
constant, however, the relative entropy reveals the same
havior as before. At high temperatures, the CL model is p
fectly valid whereas at low temperatures we witness n
physical behavior over a temperature dependent time s
for which there is a breakdown in the Markov approximati
for the bath dynamics.

The second part of our analysis for the Eckart barr
involves the trajectories of the hydrodynamic particles. T
contour plots in Figs. 5 and 6 illustrate how the quantu
density exp (g) evolves in time and the corresponding vect
field represents the material velocity field for the ensemble
the Lagrangian fluid particles. Figure 5 shows the uncoup
case where we see that the initial Gaussian gradually bi
cates into four distinct lobes. Notice that the density pack
evolution is fully coherent as the phase information in t
system is preserved for all time. At zero time the particles
initially at rest; however, they are subject to the influence
both the classical and quantum forces so that the velo
field at nonzero time reflects the direction in which the p
ticles are moving. Notice how as the packet splits, the vel
ity field tends to pull particles around to the leading edge
the forming lobes and that by timet5200 a.u. we can clearly
see the formation of several focal points that are indicated
the filled circles. As the density packet evolves, the fo
points advance outward pulling the density as they go.
lowing the particles to follow their natural paths would o
viously result in a very distorted grid of points thus spoilin
our attempts to estimate the various functions and derivat
contained in the equations of motion. We compensate for
by regularly mapping the particles back onto a rectangu

-

t
2.

FIG. 5. Density contours and velocity field for an undamp
particle,m52000 amu. The density packet is initially a symmetr
Gaussian having widthssj5sh50.2 a.u., centered about the or
gin of an Eckart barrier parametrized for the H1H2 reaction:V0

50.644 a.u. andw050.661 25 a.u.
3-7
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grid of sufficient size to account for the expansion of t
density packet. Figure 6 shows the case with nonzero c
pling g50.005 a.u.21 to a bath of harmonic oscillators a
finite temperatureT51000 K. The presence of the bath
immediately recognizable in the initial velocity field that
solely due to the influence of the dissipative vector potent
The evolution of the packet clearly shows the effects of
coherence as density amplitude in theh direction is de-
pressed. At timet5200 a.u., we can see that there is a su
stantial amount of particle flow in theh direction
corresponding to the expulsion of quantum phase inform
tion from the system. At longer times we would expect
observe the density packet to completely dissociate into
eral pieces that evolve more or less like a free particle wit
nonzero group velocity.

C. QuantumÕclassical correspondence

It has been suggested that the Bohm interpretation fail
produce the correct classical limit only for systems isola
from the environment. This argument, first given by Boh
and Hiley @9# and later expanded upon by Appleby@40#
states that if one can account for decoherence of the w
function, then the Bohmian paths should become more
their classical analogues. We find this notion to be incorr
and we feel that a clear distinction between Bohmian a
classical trajectories is warranted. Since the idea of a co
ence is absent in classical mechanics we shall be conce
with the Bohmian trajectories lying along the diagonal of t
density matrix. These paths reflect the flow of probability
the system. The Wigner function is the appropriate repres
tation for comparison with the probability distribution fun
tion of a corresponding classical system. Consider the c

FIG. 6. Density contours and velocity field for the H1H2 tran-
sition state with nonzero coupling,g50.005 a.u.21, to a thermal
bath at temperatureT51000 K.
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of a superposition state in a critically damped harmonic
cillator. The initial state is given by

c~x!5
1

&
@cg~x2xo!1cg~x1xo!#, ~35!

wherecg(x) is a Gaussian wave packet. Figure 7 shows
evolution of the Wigner representation of this state. The so
and dashed curves represent positive and negative ampli
respectively. After a few atomic time units the Wigner fun
tion does becomes completely positive and approaches
classical probability distribution function at longer time
However, we find that this does not imply that the trajec
ries of Bohmian particles bear any likeness whatsoeve
classical trajectories. In fact, for this system the diago
Bohmian trajectories become stationary, even at large
placements form the center of the harmonic well. This is
stark contrast to the behavior of classical trajectories t
converge to the bottom of the well for the case of pure
laxation. This behavior is illustrated in Fig. 8. Figures 8~a!
and 8~c! depict the Bohm trajectories in both phase spa
and coordinate space, respectively. Figures 8~b! and 8~d! are
the corresponding classical trajectories for the same osc
tor with pure dissipation. We see that the behavior of
Bohmian particles is obviously different from the classic
trajectories. In the presence of thermal fluctuations, the c
sical particles obey a Langevin equation and we expect th
trajectories to behave as random flights. From Fig. 8, i
clear that even though we have accounted for decoherenc
the quantum system, the Bohmian trajectories do not b
any resemblance to classical trajectories.

FIG. 7. Snapshots of the Wigner representation for a critica
damped harmonic oscillator with massm52000 amu, periodt
5888 a.u., and temperatureT51200 K. Solid and dashed contour
indicate positive and negative values, respectively. The initial s
is a superposition of two coherent Gaussian wave packets sepa
by d51.5 a.u.
3-8
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V. CONCLUSIONS

The picture we are lead to is that the dissipative coupl
to the environment causes a net flux of trajectory eleme
~representing population coherence information! toward h
→6` and causes the populations along thej axis to relax to
some lowest energy configuration. Furthermore, the co
ence length as set by the de Broglie wavelength, beco
more and more short ranged asT increases causing the sy
tem to become localized inh, effectively diagonalizing the
density matrix. In the equations-of-motion, both the quant
potential and the vector potential accelerate particles a

FIG. 8. Trajectories for a critically damped harmonic oscilla
with massm52000 amu and periodt5888 a.u. The trajectories ar
plotted for~a! diagonal Bohmian particles in phase space,~b! clas-
sical particles with pure dissipation in phase space,~c! diagonal
Bohmian particles in position space~d! classical trajectories in po
sition space.
cs
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from the diagonal axis. Consequently, even if the syst
were to become stationary~as in a bound system! as a result
of some balance between the influx and efflux of energy,
off-diagonal trajectories themselves remain in constant m
tion reflecting the continuous entanglement between the
tem and bath degrees of freedom. This continual ‘‘prod
tion’’ of coherence is ultimately traced to the nonlocal natu
of the quantum potential. In essence, pure decoherence
to force r~j, h! into a sharp Gaussian about the populati
axis. However, asr~j, h! becomes sharply curved abouth
50, the quantum potential begins to increase and forcesr to
broaden inh–thereby producing longer-ranged coherenc
Consequently, an equilibrium is established when the squ
ing due to decoherence is counterbalanced by the outw
pressure of the quantum force. Furthermore, even at time
the order of the relaxation time scale we find that Bohm
trajectories behave differently from classical trajectori
This strengthens the assertion that Bohm paths and clas
paths are fundamentally incongruous even postdecohere

At high temperatures, we find that our results for both t
free particle and Eckart barrier fit very nicely into this pictu
of quantum dissipation. Contradictory evidence at low te
peratures can be ascribed to the well-known breakdown
the Markov approximation on short time scales. The dom
of validity for the Markov approximation is related to th
temperature of the bath and the system-bath coupling. T
cally the Markov approximation is assumed to be valid in t
limit of high temperature that is usually applied by assum
that the thermal energy of the bath is very much greater t
the zero-point energy of the system. In some sense this l
excludes unbounded systems where the distribution of
ergy states is continuous rather than discrete. We sugge
more general criteria that is necessary but not sufficient
determining the domain of validity for high-temperature a
proximations: at any instant in time, the reduced density m
trix for a system at finite temperature must never be m
coherent than the uncoupled system. This generalization
ply states that the upper bound for the degree of localiza
in h ~i.e., sh! for a system at finite temperature at a giv
time is dictated by the corresponding uncoupled system.
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