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Quantum dissipation in unbounded systems
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In recent years trajectory based methodologies have become increasingly popular for evaluating the time
evolution of quantum systems. A revival of the de Broglie—Bohm interpretation of quantum mechanics has
spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using
techniques similar to those found in computational fluid dynamics one can construct the wave function of a
quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements
(Bohm particles which evolve according to nonclassical equations of motion. Until very recently these
schemes have been limited to conservative systems. In this paper, we present our methodology for including
the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive
hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix
and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our
applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner
phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the
bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approxi-
mation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspon-
dence in the context of the Bohmian paths.
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[. INTRODUCTION is the current an@(x) is the quantum density, which evolves
according to the continuity equation:

The de Broglie—Bohm—Madelung description of quantum .
mechanics is based upon the observation that the quantum dp+V-j=0. 3
wave functiony serves as an ancillary driving field for an
ensemble of particle elemerjts—6]. These so-called Bohm- Equations(1)—(3) are generally true for any fluid; however,
ian trajectories are typically highly nonclassical since theyfor the case of a Madelung fluid we taketo be a solution of
follow the ray lines for a geometric construction®{7]. In  the time-dependent Schifinger equation. Definingl,= J;
the causal interpretation of quantum mechanics, one can usev,d,, as the material derivative that computes the rate of
a hydrodynamic analogy to ascribe some measure of phys¢éhange along some paif (t) =v ,[x(t)], Eq. (3) becomes
cal reality to the individual trajectories. A detailed account of
this view can be found in Ref§8,9]. 1dp 4

The hydrodynamic analogy of quantum mechanics is pdt ~ (0, (4)
most naturally written in terms of the current density for a
Madelung fluid defined by the probability distribution func- Consequently, given a discrete ensemble of space-time paths
tion given by p(x)=|¢(x)|2. In the Bohmian scheme, we {x(t)} we can define the wave functigointwiseat any time
represent the fluid by an ensemble of particles that follow & as
set of paths¢(t) satisfyingx(t)=v[x(t)] which are identi- _
fied as the flow linegstream lines of the probability fluid. t It
As such, the velocity field for a particle of massis given zp(x(t)):ex;{ - fo v ,(8)ds ex;{% LL(S)dS #(x(0)),

by )

> wherefBL(s)ds is the action associated with the padtt).
T(X,t)= ——, (1)  Written as such, we can clearly see from E%). that nonlo-
p(Xx,t) cality and other intrinsically quantum mechanical effects are
faithfully represented in this description. Substituting E5).
where into the time-dependent Schiinger equation reveals that
nothing has been swept under the rug. The wave function in
Eg. (5) is a solution to the Schdinger equation, it is simply

f(x t)= i(df*ﬁg/x— Irw*w*) ) that the propagator now acts pointwise over the space of

2mi quantum paths.
In the Bohmian description of quantum mechanics, it is
generally argued that at some point these paths should re-
*Email address: jmaddox@uh.edu semble their classical analogues. Indeed, the a8ioloeys a
"Email address: bittner@uh.edu Hamilton-Jacobi equation that is almost identical to the clas-
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sical Hamilton-Jacobi equation with the addition of a nonlo-brief overview of our approach and its implementation to-
cal potential of purely quantum mechanical origin: ward quantum dissipation in unbounded systems using
adaptive-Lagrangian meshes.

h? o1
39S+ Hejass 5— ——=V2\p(x)=0. (6)
ST s 5 T5g Y VP Il. THEORETICAL OVERVIEW

The quantum potential represented in the last term represents The starting point for our approach is to consider the dy-
a strain energy due to the local curvature of the quantuniamics of a quantum mechanical particle with masand
density. It does not depend upon the actual intensity(aj, positionx in contact with a multimode bath with _coo_rdlnates
only its shape. Consequently, trajectories are accelerated did1:---dn}. The Lagrangian for such a system is given by
ther through or away from regions of intense curvature. For a
Gaussian wave packet, the quantum potential forces trajecto- m
ries away from the central peak, thereby causing the wave £= —XZ—V(X)JFE
packet to spread over as much space as possible thereby =t
minimizing the strain energy. However, since E5). must be

single valued along all the paths, the paths themselves are .. . .
not allowed to cross each other. This gives rise to regions of'/1ting the full wave function for the combined ensemble as
compression and inflation within the wave function that can )

be easily identified with constructive and destructive interfer- lp()=e """yl ge), (8
ence. Hence individual Bohmian paths are typically nonclas-

sical and generally bear no likeness whatsoever to their clast is straightforward to infer that the velocity field in the

n 2 n
m; X miw-
_2| CIiZ_ B ! Q.Z) - Yxizl CiQ; -

)

sical counter parts. system subensemble is given by
The purpose of this paper is to use the Bohmian construc-
tion to develop a quantum trajectory based theory suitable i [P (x{ah D)oY (x,{q}, ) —c.c]

for studying systems at finite temperature. We have recently vy(x,{q},t)=
reported a Bohmian-like approach suitable for quantum

Brownian motion as described by the reduced density matrix

of a tagged harmonic oscillator in which the effects of the o
environment have been reduced to an effective influence a@nd that the velocity field for a member of the bath suben-
tion [10]. Our analysis involves two types of trajectories rep-Semble is given by

resenting the evolution of the diagonal and off-diagonal ele-

ments of the density matrix and we address the questions: 5qj(x,{q},t)=qj(x,{q},t)

what (if any) effect an external environment plays in the

2mi [P (x.{a}.)]? ’
©)

evolution of a Bohmian trajectory and how can we correctly i [V (x{apDag W(x{qp,t)—c.c]
incorporate the effects of an external environment into a Bo- “omi W (x,1q},0)]2

hmian description. Since Bohmian trajectories provide a suit-

able springboard for interpretation, we can use the trajectory (10

construction as way to understand quantum relaxation, deco-
herence, and quantum/classical correspondence for a systddecause the interaction coupling the system and the bath
in contact with a thermal bath. does not commute with either of the Hamiltonians represent-
In the present study, we focus our attention on the dissiing the uncoupled evolution of the separated ensembles, the
pative dynamics of unbounded quantum systems. Our inteisystem trajectories(t) = v4(t) are entangled with the evolu-
est in unbound systems is two part. First, the potential energijon of the bath variablegy} and vice versa. For a problem
surface of an unbound system resembles the open channétsolving O(10%%) degrees of freedom the dynamics of this
of a reaction coordinate corresponding to the reactant andntangled systembath state is quite intractable. We are thus
product species of a chemical reaction. We believe that ouiorced to seek out a reduced description for the system dy-
trajectory based approach might offer some novel insighhamics. A wide variety of theoretical models have been de-
into the fundamental difficulties associated with a quantunveloped for reducing the dimensions of a complex system.
transition state theory for chemical reaction dynamics. ToThese include projection operator techniques, the Lindblad
that end we pursue an understanding of dissipative effects diil1,12 semigroup operator approach, Redfield theory, the
the Bohmian trajectories for several model unbounded sys~eynman-Vernon[13,14] influence functional approach,
tems. Secondly, the high-temperature limit of a system irfluctuating force models, and many othéc§, Ref.[15] for
contact with a thermal environment requires that the thermadn excellent reviey In this paper, we will invoke the influ-
energy of the bath be much greater than the zero-point erence functional approach that has produced several master
ergy of the system. This point becomes vague for unboundeequationg 16—18 for the reduced density matrix of a quan-
systems where there is not necessarily a zero-point motiotum system in contact with a thermal bath. In the following
leading us to conjecture an alternative criteria for rationaliz-subsections, we present a brief description of the simplest of
ing the domain of validity for high-temperature approxima-these equations, the Caldeira-Leggett master equation, and
tions in unbounded systems. In what follows, we present also its hydrodynamic reformulation.
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A. Caldeira-Leggett master equation The first two terms in Eq(14), H(x) —H(y), we combine
The motion of a classical particle in contact with a medial®9€ther as the quantum Liouvillian operator for the un-
is typically described using the Fokker-Planck equation tg°OUPIed system. The next term is the dissipative coupling to
generate the various distribution functions characterizing thée environment. Indeed, the dynamics are much similar to
motion of an ensemble of trial trajectories. In particular, thethat of a charged particle in a “magnetic” field with a vector
velocity distribution of a particle undergoing Brownian mo- Potential
tion evolves according to ~ .
A= y(x=y)(i—]). (15)
ap(v,t) d 92 o
P 275(vp(v,t))+ D,7zP(w.b), (1) However, sinceV xA=0 everywhere there no “physical’
magnetic field. Finally, the last term in EQL4) reduces the
magnitude of the off-diagonal elementsgdfx,y) bringing it
Joa diagonal form ap(x,y) evolves in time. This we asso-
ciate with the process of decoherence.

whereD,=y/MB and v is the friction coefficient. If we
apply the correspondence principle to this purely classic
equation of motion, substituting the quantum mechanical op
eratorsX for x and p for p, one obtains a corresponding ) _
quantum mechanical versi¢a9,20 B. Quantum trajectories

Since we are interested in solving H33) by represent-

, . o 1 ing p as a Madelung fluid, we shall write in the form
ihdap=[Hs,p]+hiy [X'{pvp}]_F[X'[X’P]] - suggestive of Bohmian mechanics for the quantum wave

(120 function

~ o . . p(x,y)=ed"Ah, (16)
Here, H,=T,+V(X) is the renormalized system Hamil-

tonian with potentialV(X), X and p are the quantum me- At this point, we move to a relative coordinate franje
chanical position and momentum operators acting on the sys=(x+y)/v2 and n=(y—x)/v2, whereby the components
tem and{A,B}=AB+BA is the anticommutator bracket. of the density matrix components along thelirection rep-
Finally, \ =#/y2mKT is the thermal de Broglie wavelength resent population ax=y=¢/v2 and components in the
for the particle of interest. Even though this simple substitu-direction represent coherences between two spatially sepa-
tion seems rather trivial and almost too obvious, Ftp)  rated position eigenstates. Substitutipl@, 7) into Eq. (13)
was in fact first derived by Caldeira and Legg@fL) start- ~ and usingL, from above, one obtains equations of motion
ing from a path-integral description for a particle coupled tofor a Madelung fluid with two constitutive equations. First,
a bath of harmonic oscillatofd6]. As noted by many others, an equation of continuity given by
the CL equation ishy constructionstrictly valid in the high-
temperature limit where the zero-point motions in the bath @: _ EVJ+ _ 2y , (17)
can be effectively ignored. This approximation along with dt 2 YT
the assumption of a cutoff frequency for the spectral density i
ultimately leads to a Markovian description for the correla-Secondly, the Lagrangian
tion of forces in the bath. As such, the CL model is valid only - :
for times much longer than the characteristic relaxation time L=-m¢n+2myni—Q-V, (18)
of the bath.

Working through the indicated operations in Efj2) pro-
duces a linear equation similar to the time-dependent Schr
dinger equation

the time integral of which is the actioA along a single
0quantum trajectorg(t) ={£&(t), »(t)} and is given by

t

A[z(t)]zf L(z(t"),z(t")dt’. (19
. dp °
ih—=L,p, (13 . .

at The last two potential terms in Eq18) are the quantum

potential Q=Q(x) —Q(y) and classical potential/=V(x)
—~V(y), which both come from the uncoupled Hamiltonian
at two different points. The quantum potential in the relative
frame is given by

where the Liouville operatot, is an effective “Hamil-
tonian” operator for a quantum mechanical problem consist
ing of two degrees of freedonx moving forward in time,
andy moving backwards in time. Writing E¢13) explicitly,

we find %2
Q= 1[99+ (9:9)(9,9)]. (20
. J
L,=HX)=H(y)=ify(x= y)(ﬂ_ @) In a dynamical sense, the strain energy of the Madelung fluid
increases when the local curvature of the density increases.
i 2mkT (X—y)? (14) As we have noted earlier, this term introduces nonlocal cou-
N"x Y- pling between trajectory elements and also represents a dif-
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ferential geometric constraint between the extrinsic curvaturéerences within the system by pulling amplitude away from
invariants of a surface generated By-=cg(&,7) and the the diagonal¢é axis. However, this also has the effect of
action per unit volume of a Lagrangian flow line of the drawing density matrix amplitude into regions where the co-
Madelung fluid[21]. herences are damped at an increasingly faster rate. The equi-

Given the actionA(&,7) and logarithmic amplitude librium state is achieved when these two processes counter-
g(&,7m), we can synthesize the density matrix over an enbalance the effects of the quantum potential, leading to a
semble of flow-line trajectories: stationaryp(&,7). While p may be stationary, the off-diagonal
trajectories are certainly not stationary due to the cooperation
of forces associated with the vector potential and finite cur-
vature of the quantum density. We shall have more to say
about this in a later section but for now we digress to discuss
our computational methodology.

1. 2y
- Y=z 7°(s)|ds

t
p(§<t>,n<t>,t>=exp( fo

t
+t7 JOLdS]p(g(O), 7(0),0). (21)

_ . o . Ill. COMPUTATIONAL METHODOLOGY
As in the analogous equation defining the wave function

along a trajectory line, Eq21) may only be usegointwise Our computational scheme is based upon the quantum
on a space of discrete paths parameterizedt.bip other ~ trajectory method(QTM) developed by Wyatt and co-
words, at timet=0, we discretizep over an ensemble of Workers for solving the time-dependent Safirger equa-
points {£(0),7(0)} and follow the evolution ofp as the tion [21-29. Recently Wyatt and N#26] have extended
points themselves evolve as Lagrangian fluid elements. Béheir quantum trajectory based approach to a tagged oscilla-

cause these trajectories are akin to the Bohmian trajectorid8" in contact with am-mode harmonic battiwheren<15)
of the wave function, we refer to the bundle of such trajec-With each mode treated as an ensemble of Bohmian particles.

To obtain the dynamics of the trajectory elements, we us&0ving Lagrangian mesh of points and synthesizes the wave
the canonical relation between action and momentum, herfinction over the space of paths. This is in contrast to the

defined as typical post analysis where the wave function is first com-
puted by solving the time-dependent Salinger equation
S and then the paths are computed. Other numerical applica-
p§=—%, (22 tions of hydrodynamic trajectories in quantum mechanics
can be found in Refd27,28.
IS Adapting the QTM for applications involving the density

(23)  matrix is a fairly straightforward procedure and our imple-
mentation is as follows. The density matrix of a one-

This odd relation between the canonical momenta and thdimensional(1D) quantum system is discretized over a 2D
action is due to the time-reversed dynamics inyhirection ~ 9rid Of points. Each grid point represents a Lagrangian fluid
introduced via thej* (y) contribution to the density matrix. Particle that carries a bit of density exp(and phaseé\. The

Furthermore, since we have a vector potential present in thgnSemble of particles obeys a set of Newtonian-type equa-

system, the material velocities and the canonical momentiOns of motion determined by the forces associated @th
and in general, the interactions with a thermal environ-

are no longer parallel to each other, instead, the particle vel: ) .
locities are deflected by the vector potential ment. This property of our approachlls analogous to the
“quantum dressed” classical mechanics scheme used by

pn:_o»‘_g'

P, Billing [29-32 in cooperation with a time-dependent DVR
vy= =2y, (24 methodology for solving the time-dependent Sclinger
equation.
. p The Bohm-Liouville particles are organized into local
ve=E= Ef (25)  neighborhoods over which the functions and derivatives con-

tained in Eqg.(21) can be represented using a finite polyno-
mial basis{p(&,7)} and we use simple forward Eulerian
integration to evaluate the time integrals. For a given neigh-
borhood of points, we can expand a functit(€, ») about
some central point,§;, 7,), such that the value of the func-
tion at any point §;,%;) in the neighborhood is given by

Notice that all trajectories off the diagongbxis of the den-
sity matrix are deflecte@way from the diagonal axis and
trajectories originating on thé axis are constrained to re-
main on the¢ axis. This is simply a dynamical manifestation
of the requirement that normalization of the density matrix
be preserved, i.e.,

Np
. f(fi,ni>=f(§o,no>+; aipj(&— &0 mi—1m0), (27)

d
ETrp:E _mp(f,O)d§=0. (26)

where thea;’s are the coefficients for the polynomial basis.
What strikes one as quite odd is that the presence of dissipdypically we wuse a simple quadratic basis, i.e.,
tion via the vector potential seems to create long-ranged cd-1.£, 7, £2/2,£7, 712} with approximately 10—20 points per
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neighborhood. The fact that we have more neighborhoodults. Nonetheless, despite this problem we are able to sus-
points than basis polynomials leads to an overdetermined séin sufficient numerical accuracy.

of least squares equations. In matrix notation this system

of equations becomesF=a-p, where F;=f1(&,n) IV. DISCUSSION AND RESULTS

—f(&,,7m,). The vector of coefficients is then determined for
each point by finding the shape matp< ® such thata
=p~1.F. Additionally, we incorporate a Gaussian weighting ~ Consider a free particle with mase represented by a
function such that neighboring points further away fromSymmetric Gaussian density packet having initial rms widths
(& ,m) contribute less to the determination of its coeffi- 9iven by oz=0,=0,. In the absence of any dissipative
cients. It has been found that the weighting procedure en|_nflu§:nce the Gaussian widths will expand according to the
hances the locality of the polynomial fit thereby increasing"®!ation[38],

the accuracy of the calculation. We also find it computation-

ally beneficial to impose the symmetry requirements dictated a(t)=V(x3)—(x)°=0,
by the Hermitian property of the density matrix. Specifically

A(&,m), Q(&,7m), andv, (&, 7) are all antisymmetric with 5 jineqy entropy of the system is related to the density
respect to reflectlon. across th@ axis V\./hll|e a(&,n) .and matrix by the following expression:
v¢(€,7) are symmetric. For a grid containimgx n,, points,
we can reduce the computational overhead by explicitly +oo
propagating only the uppéor lowen half points. S=—Tr(pIn P)’“Vl_j J’ p(&,m)p(§,—n)dédy,
The main advantage of the hydrodynamic approach is that o 29)
the grid points in our calculations adapt to follow the flow of
the quantum density whereas traditional Fourier techniqueghich for a Gaussian density packet is related to the rms
for solving the Liouville-von Neumann equati¢83,34 are  widths by
constrained to fixed spatial grids. Adaptation eliminates the
need to have grid points in regions where there is no signifi- B lo,
cant accumulation of density; however, as the density packet S=1- 2 o, (30
evolves into a once vacant region, the grid faithfully follows.
Other numerical methodologies for examining the dynamicd-or the nondissipative cas&=1/2 for all time sinceo,
of dissipative quantum systems use Monte Carlo path inte=o,. However, for dissipative dynamics we expect that
gral scheme$35-37 for performing the highly nontrivial o> o, due to narrowing of the density in and broadening
task of resolving an exact or approximate quantum propagdn & as a consequence of decoherence and relaxation. So we
tor for the reduced system. would predict that the linear entropy must be greater than
Unfortunately, there are several caveats that one encou@ne half for a free particle in contact with a thermal environ-
ters while using an adaptive Lagrangian grid. When the curment. We have analyzed the time dependence of the rms
vature of the density becomes intense the subsequent quanidths and the linear entropy for a free particle with mass
tum forces are quite strong that often result in crossedn=2000 amu in contact with a thermal bath at various tem-
trajectories: a phenomena that is strictly forbidden in the deperatures. In Fig. 1, we have plotted the curves for the linear
Broglie—Bohm approach. This is referred to as the nodaentropy. The solid line represents the entropy for uncoupled
problem and has been addressed by Wyatt and Bittner inase and we see that it does not vary with time. At high
Refs.[24,25. A problem that is unique to dissipative systemstemperaturesT=800 K), we observe that the curves for the
is associated with the vector potential whereby particles arénear entropy do increase in time and reflect the fact shat
continuously deflected outward from theaxis resulting in a  is a decreasing function of time. This behavior is related to
substantial loss of numerical accuracy. To combat this effecthe destruction of phase information in the system and is the
we find it necessary to periodically remesh the particles backallmark of decoherence in our calculations. At low tempera-
onto a uniform grid. In bound systems, we have found thatures (T<500 K) the entropy actuallglecreaseswith time
mapping the particles to a grid with dimensions defined byand in some case® and 100 K becomes less than zero,
eight times the rms width of the density to be very successpotentially violating the second law of thermodynamics. This
ful. This method does not work so well for unbounded sys-result is somewhat suspicious in that the curvessfpdomi-
tems as the rms widths grow rapidly causing the mesh ohate over those corresponding tq-. The odd behavior
particles to become very sparse as the grid expands. In tteeems to suggest that at low temperatures, phase information
calculations that follow, we have imposed cut-off restrictionsactually flows into the system, a result that contradicts both
such that the dimensions of the grid will not expand beyondhe physical nature of decoherence and the fact that there
an arbitrary predetermined length. Combining the cut-off recannot be coherence between states with zero population
strictions with the remeshing procedure ensures that the defi38]. Notice that the entropy curves at 300 and 500 K plateau
sity of grid points is large enough to accurately compute theand eventually recross the undamped curve. This behavior
derivatives in the equations of motion. Eventually though thandicates a time scale over which the CL model is not valid
density becomes nonzero at the end points of the grid causnd demonstrates how that time scale decreases with increas-
ing reflections that introduce spurious effects into our re-4ng kT.

A. The free particle

242

1+ ———| . (29
4m20'f31
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h 200 400 600 800 1000
100 200 300 400 500 t (a.u.)
t (a.u.)
) ) ) FIG. 2. o vs time curves for a particle relaxing on the Eckart
FIG. 1. Linear entropy vs time curves for the free particte, | o at temperaturesolid) T=0 K, (— — —) T=100K, (-— — )
=2000 amu, in contact with a bath of harmonic (_)scnlators with+_ 3090 K, (----) T=500K, (----) T=800K, and (---) T
damping constany=0.005 a.u.! at temperaturegsolid) T=0K, =1200 K.
(——-) T=0K, (-— ——) T=100K, (---) T=300K, (----) T
=500K, (---) T=800K, (--~) T=1200K, and(- - - -) T

imagine the uncertainty product to decrease over the course
of the decoherence time scale and then turnover to increase

Another way that we can look at this is in terms of the at some thermally prescribed rate. At low temperatures
i increases at greater rate

Wigner representation of the density matrix. If we take the/Ncréases as k:efore, howeve:,r,] . i ;
Wigner transforn39] of a Gaussian density matrix, we find res.ultlng In a supergoherent 'densny matrix that violates
that the width in# is inversely proportional to the spread in Heisenberg’s uncertainty _pr|nC|_pI(AQAF_>>ﬁ. R_ec_all tha_t
momentum ofW, . SettingQ= ¢, the Wigner transformation the CL master equation is valid only in the limit of high

p | temperature. Perhaps then it is not surprising that as we

in the relative coordinate system is given by probe the lower bounds of this approximation, we subse-
. guently violate several fundamental laws of physics. Our re-
Wp(Q,P)=f p(Q,n)eP7dy. (31  sults serve as a demonstration of the well-known failure of

the Markov approximation at low temperatures.

=2000 K.

Taking
) ) B. The symmetrical Eckart barrier
p(&,m)=A ex;{ — }(f_ﬁ 77_2” (32 Next, we apply our methodology to the nontrivial prob-
2\o; o lem of a wave packet relaxing on an Eckart barrier,
as the form of a Gaussian density packet, wh&iie a nor- V(x)=V, sech(mx/w,). (34)

malization constant, the Wigner distribution is

1/02 P2y2 T_h_e Eckart bﬁrrier ?erves;sl_a ber?chmarlf problen;_from trfan-
_ Tl > 7 sition state theory for modeling the reaction coordinate of a
W,(Q.P) \/ZU”A exp{ 2 ( o h? ” 33 collinear H+H, reaction. Here we study the effects of dissi-
pation on a Gaussian density packet centered about the peak
When(Q) =0 the uncertainty in position is given by the rms of the barrier that is parameterized to resemble theH
width AQ=o. For our Gaussian density packet, the uncerreaction, whereV,=0.0249 a.u. andw,=0.6613 a.u. We
tainty in momentum is then related to the uncertaintyyvia  again examine the time dependence of the rms widths of the
a simple Fourier relationshiphP=+7/o,. Looking at the density packet and the linear entropy at various bath tem-
undamped case we know that the uncertainty productperatures. The results for; ando, are plotted in Figs. 2 and
AQAP=hao,lo, is preserved for all time. For the high- 3, respectively. The curves for the Eckart barrier exhibit the
temperature cases;, increases whiler, decreases, hence same general trends as the free particle problem. In the ab-
the uncertainty produch QAP also increases. Furthermore, sence of a dissipative influence, the rms widthstiand 7
if the initial state were not a minimum uncertainty stéte.,  evolve identically for all time. For the high-temperature
a squeezed state where;# o, at time t=0) one could cases, we see evidence of decoherence as density amplitude
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FIG. 3. g, vs time curves for the Eckart barrier at the tempera- £ (a.u.) & (a.un.)

tures using the same dashing scheme as in Fig. 2.
FIG. 5. Density contours and velocity field for an undamped

. . L particle,m=2000 amu. The density packet is initially a symmetric
in 7 is damped down in time. At low temperatures, we 0b-g4ssjan having widths .= o,=0.2 a.u., centered about the ori-

serve that the curves far, exceed that for the undamped gin of an Eckart barrier parametrized for theti, reaction:V,
scenario. As we have discussed, this nonphysical result sug:=q 644 a.u. andv,=0.661 25 a.u.
gests that the density matrix at finite temperature has become

more coherent than the uncoupled system. After a Certa'ﬂme, the linear entropy for the undamped case is no longer

point in time, we see that the low temperaturg curves constant, however, the relative entropy reveals the same be-

e"ef‘t“a”y pottom out and recross the undamped solid ”n‘.?havior as before. At high temperatures, the CL model is per-
Basically this corresponds to the emergence of a character|§éctly valid whereas at low temperatures we witness non-

:';pgrg? ::r?::;sﬁsvienrvvglr\]/li%g ttr;]ee ?i:rll_er;]rogﬁirlc?p?\ilslg\./:nsilﬂg physic'al behavi.or over a temperature dependent time §ca|e
4. Because the density packet is not strictly a Gaussian for 4Er which there is a breakdown in the Markov approximation
' yp y r the bath dynamics.
The second part of our analysis for the Eckart barrier
1 involves the trajectories of the hydrodynamic particles. The
contour plots in Figs. 5 and 6 illustrate how the quantum
density exp@) evolves in time and the corresponding vector
field represents the material velocity field for the ensemble of
the Lagrangian fluid particles. Figure 5 shows the uncoupled
case where we see that the initial Gaussian gradually bifur-
cates into four distinct lobes. Notice that the density packet’s
evolution is fully coherent as the phase information in the
system is preserved for all time. At zero time the particles are
initially at rest; however, they are subject to the influence of
both the classical and quantum forces so that the velocity
field at nonzero time reflects the direction in which the par-
ticles are moving. Notice how as the packet splits, the veloc-
ity field tends to pull particles around to the leading edge of
the forming lobes and that by time= 200 a.u. we can clearly
see the formation of several focal points that are indicated by
the filled circles. As the density packet evolves, the focal
points advance outward pulling the density as they go. Al-
lowing the particles to follow their natural paths would ob-
100 200 t(3£?1.) 400 200 600 viously result in a very distorted grid of points thus spoiling
our attempts to estimate the various functions and derivatives
FIG. 4. Linear entropy vs time curves for the Eckart barrier atcontained in the equations of motion. We compensate for this
various temperatures using the same dashing scheme as in Fig. 2y regularly mapping the particles back onto a rectangular
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FIG. 7. Snapshots of the Wigner representation for a critically
FIG. 6. Density contours and velocity field for thetil, tran-  gamped harmonic oscillator with mass=2000 amu, periodr
sition state with nonzero coupling;=0.005 a.u.l, to a thermal =888 a.u., and temperatufe= 1200 K. Solid and dashed contours
bath at temperatur&=1000 K. indicate positive and negative values, respectively. The initial state
is a superposition of two coherent Gaussian wave packets separated
grid of sufficient size to account for the expansion of theby d=1.5a.u.
density packet. Figure 6 shows the case with nonzero cou- .
pling y=0.005 a.u.* to a bath of harmonic oscillators at Of a superposition state in a critically damped harmonic os-
finite temperatureT=1000 K. The presence of the bath is Cillator. The initial state is given by
immediately recognizable in the initial velocity field that is
solely due to the influence of the dissipative vector potential.
The evolution of the packet clearly shows the effects of de-
coherence as density amplitude in thedirection is de-
pressed. At timé= 200 a.u., we can see that there is a subwhereyy(x) is a Gaussian wave packet. Figure 7 shows the
stantial amount of particle flow in they direction evolution of the Wigner representation of this state. The solid
corresponding to the expulsion of quantum phase informaand dashed curves represent positive and negative amplitude,
tion from the system. At longer times we would expect torespectively. After a few atomic time units the Wigner func-
observe the density packet to completely dissociate into sevion does becomes completely positive and approaches the
eral pieces that evolve more or less like a free particle with a&lassical probability distribution function at longer times.
nonzero group velocity. However, we find that this does not imply that the trajecto-
ries of Bohmian patrticles bear any likeness whatsoever to
classical trajectories. In fact, for this system the diagonal
Bohmian trajectories become stationary, even at large dis-
It has been suggested that the Bohm interpretation fails tplacements form the center of the harmonic well. This is in
produce the correct classical limit only for systems isolatedstark contrast to the behavior of classical trajectories that
from the environment. This argument, first given by Bohmconverge to the bottom of the well for the case of pure re-
and Hiley [9] and later expanded upon by Applelp#0] laxation. This behavior is illustrated in Fig. 8. Figure&)8
states that if one can account for decoherence of the wavand 8c) depict the Bohm trajectories in both phase space
function, then the Bohmian paths should become more likeand coordinate space, respectively. Figurds 8nd 8§d) are
their classical analogues. We find this notion to be incorrecthe corresponding classical trajectories for the same oscilla-
and we feel that a clear distinction between Bohmian andor with pure dissipation. We see that the behavior of the
classical trajectories is warranted. Since the idea of a coheBohmian particles is obviously different from the classical
ence is absent in classical mechanics we shall be concernéajectories. In the presence of thermal fluctuations, the clas-
with the Bohmian trajectories lying along the diagonal of thesical particles obey a Langevin equation and we expect those
density matrix. These paths reflect the flow of probability intrajectories to behave as random flights. From Fig. 8, it is
the system. The Wigner function is the appropriate represerclear that even though we have accounted for decoherence of
tation for comparison with the probability distribution func- the quantum system, the Bohmian trajectories do not bear
tion of a corresponding classical system. Consider the cassny resemblance to classical trajectories.

1
lp(x):E[¢g(x_xo)+¢g(x+xo)]! (39

C. Quantum/classical correspondence
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(b) from the diagonal axis. Consequently, even if the system
were to become stationafgs in a bound systenas a result
of some balance between the influx and efflux of energy, the
off-diagonal trajectories themselves remain in constant mo-
tion reflecting the continuous entanglement between the sys-
tem and bath degrees of freedom. This continual “produc-
tion” of coherence is ultimately traced to the nonlocal nature
of the quantum potential. In essence, pure decoherence tries
] to force p(¢, n) into a sharp Gaussian about the population
Qg (au.) axis. However, ap(& 7) becomes sharply curved abogt
=0, the quantum potential begins to increase and fosdes
broaden inyp—thereby producing longer-ranged coherences.
Consequently, an equilibrium is established when the squeez-
ing due to decoherence is counterbalanced by the outward
pressure of the quantum force. Furthermore, even at times on
the order of the relaxation time scale we find that Bohmian
trajectories behave differently from classical trajectories.
This strengthens the assertion that Bohm paths and classical

-2

a7 _al paths are fundamentally incongruous even postdecoherence.
0 2 4 6 8 10 0 2 4 6 8 10 At high temperatures, we find that our results for both the
t (10 a.u.) t(10% a.u.) free particle and Eckart barrier fit very nicely into this picture

of quantum dissipation. Contradictory evidence at low tem-
peratures can be ascribed to the well-known breakdown of
the Markov approximation on short time scales. The domain
of validity for the Markov approximation is related to the
temperature of the bath and the system-bath coupling. Typi-
cally the Markov approximation is assumed to be valid in the
limit of high temperature that is usually applied by assuming
V. CONCLUSIONS that the thermal energy of the bath is very much greatgr tha_n
the zero-point energy of the system. In some sense this limit
The picture we are lead to is that the dissipative couplingexcludes unbounded systems where the distribution of en-
to the environment causes a net flux of trajectory elementsrgy states is continuous rather than discrete. We suggest a
(representing population coherence informatiooward » more general criteria that is necessary but not sufficient for
— * o0 and causes the populations along #axis to relax to  determining the domain of validity for high-temperature ap-
some lowest energy configuration. Furthermore, the cohemproximations: at any instant in time, the reduced density ma-
ence length as set by the de Broglie wavelength, becomdsix for a system at finite temperature must never be more
more and more short ranged @sncreases causing the sys- coherent than the uncoupled system. This generalization sim-
tem to become localized im, effectively diagonalizing the ply states that the upper bound for the degree of localization
density matrix. In the equations-of-motion, both the quantunin 7 (i.e., o,) for a system at finite temperature at a given
potential and the vector potential accelerate particles awaiime is dictated by the corresponding uncoupled system.

FIG. 8. Trajectories for a critically damped harmonic oscillator
with massm= 2000 amu and period=888 a.u. The trajectories are
plotted for(a) diagonal Bohmian particles in phase spate,clas-
sical particles with pure dissipation in phase spdcg,diagonal
Bohmian patrticles in position spacd) classical trajectories in po-
sition space.
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